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Analytical equations are derived which describe a distortion of heat radiation characteristics.for gray diffuse 
and black surfaces, bounded by straight lines or circumferences, with #near and parabolic temperature 

profiles. 

In thermophysical studies based on optical pyrometry with a noncontact determination of characteristic (radiation, 

color, brightness) temperatures [1], an instability of the radiator temperature 121 can produce appreciable errors. Additional 

difficulties arise for a nonuniform temperature distribution over the radiating surface area, when a superposition of the 

radiation characteristics of different-temperature regions brings about uncertainties. It is methodically more complicated to 

carry out investigations and interpret the measurement results in such cases than in the presence of thermal contrasts between 

adjacent isothermal regions [3, 4]. 

The current investigation was aimed at studying the salient features of the radiation characteristics of nonisothermal 

surfaces, determining the significance criteria of temperature nonuniformities for the simplest configurations of a radiating 

region with the most typical temperature profiles, correlating the characteristic and surface-average thermodynamic 

temperatures, and obtaining the effective temperature which defines the radiant energy transfer and characterizes the radiative 

heat transfer rate. 

At the first stage of the investigations, some assumptions and restrictions will be adopted to narrow the range of 
possible variants of the initial conditions: 1) the radiating surfaces are black or gray diffuse; 2) the regions considered are 

plane, bounded either by parallel straight lines (a rectangule, an infinite strip) or by a circumference; 3) the observation 

direction is normal to the plane area and the observation is conducted at a considerable distance, i.e., we assume an almost 

parallel beam of radiant energy; and 4) temperature distributions of two types are considered, viz., linear and parabolic. Such 

distributions are typical and can appear in the characteristic heat transfer conditions, i.e., with transverse heat fluxes passing 

th,'ough the section or with a uniform internal heat release. Both processes set up corresponding temperature fields in a 

stationary thermal mode. Many real situations fall, more or less closely, under the above-stated examples. 

1. Let us proceed to considering the heat models of the objects studied (Fig. 1). Spatial orthographic epure 

projections of linear one-dimensional temperature distributions over a rectangular area (Fig. l a) and a disk (Fig. lb) represent 

the pattern of isotherms depicted by equidistant straight lines. 

The temperature distributions in these cases are described by the relations 

AT 
y ( 2 )  = T1 + T  (1 - -X) ,  

X X - -  

l 

r AT (1 +pcosq~), p = - -  
T (p, q~) = T~ + T Z 

(l) 

(2) 

whereas for parabolic temperature distributions (the epures and patterns of isotherms with all necessary designations are given 

in Fig. lc, d) we have, correspondingly, 

T (7~) T~ + 6T (1 - -  ~ ) ,  (3) 
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T (9) = T1 + AT (l - -  p2). (4) 

Equations (1)-(4) pertain to the variants of  heat models hereinafter numbered in the adopted sequence - 

accordingly,variants 1-4. 

For the convenience of subsequently using Eqs. (1)-(4) in conformity with the physical meaning of the problem, the 

initial parameters T 1 and AT must be substituted by T s and ~p = AT/T s (T s is the surface-average temperature). 

The averaging for variants 1 and 3 is executed by one general equation; likewise, a general representation can be 

assumed for variants 2 and 4: 

+ = = - -  pdp pT (p, r dpd% 
._ rc b ~o 

(5) 

Integration yields the expression for T s that is common tbr all four variants 

T+ = T1 + mAT. (6) 

The values of m for variants 1-4 are tabulated in Table 1. Having substituted T 1 = T s - mAT into each of the 

corresponding Eqs. (1)-(4), we obtain for variants 1-4, accordingly, 

T ( X )  T~ 1 - -  ~ X ,  T(p ,  q~) T~ pcos  
2 , ' 2 -  ~P, ' 

7 ' ( X ) = T ~ [ . I - - , '  --~- * ( 1 - - 3 X - " ) ,  T ( p ) = T s l l  + * ( 1 - - 2 p 2 ) ] . - } -  

(7) 

2. We consider the possible ways to describe the heat radiation of areas, starting from the analysis of the spectral 

radiation flux density, which for the black surface can be represented as 15] 

I~=C1L-5[ exp " C+ ) - l i -~ , (8) 

where C l = 0.374.10 -5 W ' m  2, C 2 = 1.4388.10 -2 re.K, and T x is the temperature which can be specified in two ways: l) as 

the surface-average temperature T x = T s and then a certain value of Ixs, corresponding to the radiation of an isothermal 

black body with a thermodynamic temperature T s, will be calculated from Eq. (8); 2) as a function of the coordinates, and 

then I x will also be predicted as a function of the appropriate coordinates. 

In the latter case, determining the effective value Ixc, perceived by a detector at a sufficient distance (when the entire 

radiating region is observed rather than its individual segments), necessitates a numerical integration of function (8) with 

respect to the appropriate coordinate (or two coordinates for variant 2), which is an argument of  this function, whereas T x 

becomes an intermediate parameter. 

Of particular interest in the problem being solved is investigating the quantity 

6~. - -  [ ~ + e - -  I~.._~ (9) 
I k9 

as a function of X, Ts, and ~,. 
Having studied the characteristic of the deviation of the radiation spectrum of a nonisothermal area from the radiation 

spectrum of an isothermal radiator for a black body, it is possible to extend the deductions to the behavior of  the same 

function 6v(k, Ts,  if) for nonblack bodies since the radiation coefficient in the numerator and the denominator of  Eq. (9) is 

cancelled (if insignificant nonlinearities are neglected). 
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Fig. 1. Heat models of  radiating objects: a) linear temperature distribution 

over a rectangular area, b) linear temperature distribution over a disk; c) 

parabolic temperature distribution over a rectangular area; d) parabolic 

temperature distribution in a disk. 

For integral radiation, an analogous characteristic 6 2 is introduced 

Ee-- E,~ (10) 
E, 

where, in accordance with the Stefan-Boltzmann law, E s = o-Ts4 [5],  and E c fiw variants 1 and 3 and separately for variants 

2 and 4 can be represented in the corresponding general forms 

1 t . ~  1 

s ~ : ~  .l>(x)dx, s~=---~- (i' ,o<o)-'- i IP>( ,~ ~)d~,d~. 
2_1 rc i5 b ~' 

(l J) 

3. By the data of  numerical studies ff~r all variants 1-4, the quantity 6 x can be approximated by a unique relation of 

the tbrln 

g> A~__ ~ ~ ,~ Z,T~ 
1000 (12) 

where h is in #m,  and (XTs) 0 = 1000 #m.K is taken fi~r convenience. Having assumed here at for each of the variants its 

own constant value of the proportionality factor A o averaged over the range 1 < ~" < 20 (such average values are given in 

Table 1), it is possible to judge the errors of  such a simple and convenient approximation from the data of  Fig. 2, where 6 a 

= (~X - ~X)/6X (6X is the relation computed really from Eq. (9) and 6X is the approximating function of the form (12)). 

As is clear from the figure, the approximation errors for models 1 and 4 are fairly small and do not exceed 10% in 

the most important range 2 _..< ~" < 10. For model 2, the errors increase sharply in the same range of ~ but only when ~b < 

0.2. For variant 3, a peculiarity in the behavior of the approximation errors is observed which is expressed in increased 

values of 6 a at ~ > 5 and in the curve shapes in the interval 1.5 _< ~" _< 4. 

635 



TABLE 1. Parameters of Approximating Equations 

Param- Variant numbers " 
eter t 2 3 4 

m 

Ao 

~2 

A12 

AB 
Bj 
b 
D 

1/2 
8,85 
1,90 
4,75 

8,75~0,25 

620 
2278 
0,49 
0,5 

1/2 
6 ,8  
1,85 
5,00 

s,s_+0,2 

540 
2358 
0,37 
0,38 

2 / 3  
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Fig. 2. Relative error of  the approximation of 6a at a 
constant value of A o and values of  A as flmctions of  ~', 

related to 6 a by A = Ao/(I - ~ia): a) models I and 4 (Fig. 

la, d); b) model 3 (Fig. 1 c); c) model 2 (Fig. I b); 1, r 

= 0.2; 2, 0.4; 3, 0.6; 4, 0.8; 5, 1.0; 6, 0 .0t ;  7, 0.03; 8, 

0.05; 9, 0.07; 10, 0.1. 

It should be noted that marked errors are characteristic of the sections of little practical importance - in the range ~" 

< 1 the radiant flux contains a small fraction of the total energy ( <  0.1%), whereas for ~" > 10, 6 x < 0 .1%,  which is 

beyond the scope of the metrological capabilities of  the measuring equipment. At the same time, for a practically complete 

elimination of the approximation error, the curves in Fig. 2 can be considered as the relation A(~') (the corresponding values 

of  A on the ordinate axis are given on the right), whereas lbr a partial but substantial elimination of  the error,  it is sufficient 

to narrow the range of ~" studied. Thus, it is evklent from Fig. 2 that the curves 6a(~') as well as A(~') have intersection points 

for various r The coordinates of points ~'1 and t"2 are given in the table, which also presents the average values of A12 for 
this range with the indicated maximum deviations frorn the average value in the chosen range. As can be seen from the data 

of the table, the approximation error in the most important range 2 < f < 4-5, containing 50% of the total energy, is, on 

the average, not larger than about 3%. 
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In studying the quantity 6X, analytical relations ff~r the values that of k,n as fimctions of  ~ were obtained at which k 

reaches an extremal value. With an error less than 1% it can be written that 

)~,,~__ B(q,~) , B(q~) - - B 0 - - A B ~ " ,  A B : : B 0 - - B >  
T,  

B o - - B ( ~ = : O ) ,  B , = B ( q 0 =  1), t z = 2 ( 1 - - b , ) ,  

(13) 

where B o = 2898 /xm'K [3-5] and the values of  AB, BI, and b are given in the table. With ~b = 0, Eq. (13) goes over into 
the equation describing the Wien displacement law. 

The quantity 6I: can be defined using the analytical sohition of integrals (5) and (11). In all the four variants we can 
confine ourselves to the equation 

6,: := D~ ~. (14) 

The values of  the proportionality factors D with an error less than 1% for the variants of  heat models considered are 

tabulated. 

It is noteworthy that similar results can also be obtained for the characteristics of  directed radiation of  three-dimensional 

nonisothermal bodies, i.e., for nonplanar surfaces. As an example, a cylinder with a linear transverse temperature field can 

be examined. At large distances from the cylinder in the directions normal to the generatrix in the coordinates ~ = 0 and ,-, 

T(~o = 0) = T2, T(~ = ~r) = T 1 (see Fig. lb), the relative deviations of  6 x and 61c , when approximated by Eqs. (12) and (14), 

have the following coefficients: A = 1.8 and D = 0.105. At the same time, when the observation is executed from the 

intermediate position ~o = ~r/2, the  values of  bx and 6~ prove to be identical to those for a plane projection of  the same 

cylinder. In determining the radiation characteristics of  such a cylinder in various directions it is possible, in principle, to find 

in it the characteristic features of  the indicated temperature distribution. 

4. Let us consider the analogs of  the characteristic (radiation, color, and brightness) temperatures used in pyrometry 

for nonisothermal radiating areas. 

Taking into account that the radiation temperature T r for the black body coincides with its thermodynamic 

temperature TT, whereas E e = o-Tr4 = OTT 4 and E s = aTs 4, Eqs. (10)and (14)yield 

-i - - - -  .4 

Tp : -  T,,, =.- 1 1 _ 6,, Ts  .... 1, I 4- Dq) 2 7"s (15) 

and it turns out that the effective thermodynamic (or radiation) temperature governing the specific power of  the radiant flux 

and characterizing the rate of  the radiative heat transfer exceeds the surface-average temperature of  the radiating area since D 

> 0. In the limiting hypothetic case ~, = 1 for models 1, 3, and 4 we obtain T r = 1. 105T s. 

The color temperature can be defined with the aid of  Eq. (13): 

,) T 1 AB ti)t z --1 . . . . .  r~ (16) 
O ., B o  

and at ~b -+ 1 for variants 1 and 4 T c = 1.272 T s. 

The expression for the brightness temperature can be derived with consideration of Eqs. (8) and (9); tbr the range 1 
< ~" < 5 it is convenient to utilize the relation 

i + 1' T = 1-- )vTs  ln(1 @ 6)~) T~, (17) 
b 

where b o = (hc)/k = 14.103 ~m-K. 

For 6 x < 0.1, with an error less than 4%, 

( ), ( A 1! T b ~  1 1-4 6~ T ~ =  1 - -  ~ i,5~z T,. (18) 
-14 " / " 
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As seen from Eqs. (15)-(18), the characteristic (radiation, color and brightness) temperatures for a nonisothermal region with 

any of the considered configurations and temperature Profiles are higher than the surface-average temperature, which is 

noticeable, however, for significant temperature nonuniformities at values of ff close to unity. 

5. It is appropriate here to tackle the question as to the criterion of a sufficient isothermality. In case we proceed 

from the spectral-energy characteristics of radiation and assume the permissible value 6 x = 1%, then, according to Eq. (12) 

and the tabulated data, the permissible nonuniformity for variants 1, 3, and 4 constitutes, on the average, ~bp < 0.03 ~-1.25, 

i.e., at ~" - 1 we have @ < 0.03, whereas at ~" = 4 we obtain already ffp < 0.15. For the integral radiation characteristic, 

taking 613 = 1%, we get for the same variants ~bp < 0.15. Interestingly, with the allowance for 6Z: expanded to 10%, the 

requirements for isothermality reduce appreciably. At the same time, when the range of the permissible distortion of the 

spectral radiation composition is extended to 6iX = 10%, the requirements for isothermality remain the more stringent the 

smaller the value of ~'. 

It must be pointed out that, for practical measurements, the energy characteristic in a definite interval of the values 

of A~" can prove to be more interesting. In this case, the deviation of the energy characteristic of radiation from that typical 

of the black body can be found through integrating Eq. (12): 

8~-- 1 ~8:d~ 2 A~I~2 ( ~ _ ~  1 

As an example, consideration will be given to three characteristic ranges of ~': 1-4, 4-8, and 4-16 (the first and third 

ranges contain up to half the total radiation power). With ~ = 0.2, the values of 6zx ~- in these ranges are equal, accordingly, 

to 7, 0.5, and 0.25% (in calculations, the average value of A for variants 1, 3, and 4 is taken). While the deviation in the 

first range can be observed, the nonisothermality signs in the secured and third ranges of ~" will not be noticeable actually with 

any measurement method used. 

6. To the most interesting conclusions ensuing from the results of the investigations conducted, it is possible to refer 

the possibility of discriminating, under defirfite conditions, the characteristic configuration of the radiating area and the 

typical temperature profile on its surface. In this regard, variants 1 and 4 turn out to be identical, which is determined from 

the similarity of the results of averaging the parameters governing the values of 6 x and 612. Variant 3 is characterized by an 

elevated, as compared with others, value of T s relative to T 1 and AT (see Eq. (6) and the table), which leads to an increase 

in the values of 6 x and to a displacement of the interval ~2-~'1 towards smaller values with increasing coefficient A over the 

interval (~'1, ~'2) (see the table). Variant 2 differs strongly from the remaining ones by the minimum deviation of the radiation 

characteristics from the case with an isothermal surface (by the minimum values of A and D, see the table). This becomes 

physically understandable provided an account is taken of the fact that, as compared with variant 1, in the variant 2 model the 

regions with the temperature other than the surface-average temperature have a smaller weight (take up smaller areas). Here, 

the coefficients A and D for variants 1 and 2 relate in approximately the same way as the area of a square to the area of a 

circle inscribed in it. 
The derived analytical equations provide, regardless of their simplicity, effective estimates of the distortion of the 

radiation characteristics resulting from the surface nonisothermality. The considered approach can be extended to more 

complex variants of the heat models of objects. 

NOTATION 

T, temperature of radiating surface, K; T1, minimum temperature of radiating surface, K; AT, telnperature drop on 

radiating surface, K; Ts, surface-average temperature, K; TT, Tc, and Tb, thermodynamic, color, and brightness 

temperatures; X, r, and ,p, running coordinates; l, characteristic dimension, m; I x, surface-average radiation flux density, 

W/(m2'/xm); X, wavelength, /zm; X m, the value of X at which surface-average radiation flux density takes the extreme value, 

/.tm. 
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LOCAL CHARACTERISTICS OF HEAT-RADIATION 

SUPERCONDUCTOR DETECTORS BASED ON 

HIGH-TEMPERATURE SUPERCONDUCTOR FILMS 
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Relations are proposed for evaluating the local values qf the thermal sensitivio,, speed of response, and 
resolution of a heat radiation detector based on high-temperature superconductor fihns. 

Superconductor sensitive elements (SE) find an ever wider application in creating heat radiation detectors [1]. Until 

recently, however, their application has been limited by the necessity of using liquid helium as a thermostabilizing coolant. 

The appearance of high-temperature superconductors (HTSC), whose superconducting transition temperature exceeds the 

boiling temperature of liquid nitrogen at normal pressure, has greatly extended the range of application of superconductive 

heat radiation detectors (SHRD). Study [2] analyzed the integral inertial-sensitive characteristics of SHRD manufactured 

based on HTSC films by various methods (~f their thermostabilization. It is shown that they are determined chiefly by the 

thermophysical properties of the substrate and by the value of the thermal coupling of the SE with the thermostat. The 

estimates obtained therein made it possible to draw a conclusion that the existing technologies permit the creation, based on 

HTSC fihns, of SEs operating at nitrogen temperatures, which could provide, with response times of about 1 sec, integral 
thermal response not worse that 10 3 K/W. 

The detection of several heat radiation sources or the image reconstruction of an extended heat source raises the 

problems of the spatial and temporal resolution of heat fluxes incident on SE. The local thermal characteristics of the SEs of 

SHRDs also begin to play an important role. The aim of the present study is to analyze the basic local thermal characteristics 

(sensitivity, speed of response, and resolution) of the SEs of SHRDs based on HTSC fihns. 

tn the simplest of cases an SE is a flat multilayer structure whose main elements are an HTSC fihn, a substrate, a 

thermally-controlled coolant duct, and a thermal resistance providing for the thermal coupling of the substrate with the 

coolant duct (Fig. 1). The thickness of the HTSC fihn is usually two orders of magnitude smaller than the substrate thickness 

and is about 1 /xm. Therefore, already 1 ,asec after heat radiation starts affecting the SE, the substrate influence on a 

temperature mode of the HTSC film becomes dominant. To estimate local thermal characteristics of the SE, let us substitute 

tbr it a model of a semi-infinite medium with the same thermophysical parameters as the substrate and analyze its temperature 
field due to a narrowly-directed heat radiation flux incident on the surface (Fig. 2). 

To describe the substrate temperature in the approximation adopted, we can use the known solution to a problem on 

the propagation of thermal energy into the halt-space from the local heat source of power Q located on its surface in a circle 

of radius r o [3]: 

AT(r, z, t )= T (r, z, t ) - - T o - - - -  
2rtro;~ 

e o  

.! Jo (~r) J~ (~ro), x 
0 

exp (~z) qb ( z 
2 (at) ~ 

- -  exp(--~z) q) ( z ~(at)O,s')_2sh(~z)) d~ 
2 ( ~ ) o , 5  - , , 

+ ~ (at)~ - -  

(~) 
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